Nutrigenomics and Nutrigenetics The Scientific Context

Christian Bréchot Vice-President Institut Merieux Scientific and Medical Affairs

christian.brechot@institut-merieux.com

Nutrigenomics

Specific groups or Individual, Personal, Patterns of Response?

Nutrigenetics

Modified from S Massart

Scientific Background

Nutritional environment modifies the expression of genes: Which biomarkers?

Nutrients metabolism is dependent on genetics and this may impact health

Single gene-related diseases are rare but have a clear impact

Multiple gene-related diseases are the most frequent and much more complex to analyze: Wich impact?

A representative example of modern Nutrigenomics Diet-driven changes:

Anti-inflammatory diet mix in healthy but overweight men:

The effects are personal and can be revealed by a visualisation method (« health Space »)

Three patterns of changes, in three different group of individuals:

Metabolic and oxydative response

Metabolic and oxydative with low inflammatory response

Inflammation markers

Bakker et al Am J Clin Nutr 2010; 91 (4) 1044-1059

Only 24.000 genes...However, 9.000.000 variants

Single Nucleotide Polymorphisms (SNP)

Sequencing

Single Nucleotide Polymorphism SNP

UCD Institute of Food and Health

Nutrigenetics today

Genome sequencing, SNPs analysesOnly coding regions (sequencing)

>20-50 genes: NAT2, MTHFR, T2R, AMY1, G Proteins

Weight Management,
Heart health,
Nutritional needs,
Bone health

S Massart

Personalised Nutrition Testing now offered by companies

Examples:

-Sciona -Genelex -Market Amerika -SuraCell

Test pricing: 100 to 1000 US\$

Insulin Resistance

- "Analyzes five of your genes that may play an important role in determining how your body manages overall insulin resistance"
- "..assesses five key diet and lifestyle action areas"

Gene Analyzed	Role of the Gene in Insulin Resistance	Genetic Variation Screened For Variations Found in Your Gene	Percentage of Population with this Gene Variation*
VDR	Mechanism of Insulin Secretion	CTaqlT	70.6
VDR		TBsmlC	69.6
IL-6	Inflammatory	G(-174)C	36.3
TNF-a	Response; Response of Cells to Insulin	G(-308)A	16.5
PPARy	Glucose and Lipid Metabolism	Pro12A	61.0
ACE	Blood Pressure Regulation	II/DD	10.3
*The population frequencies given are normalized for the U.S. population data from the U.S. 2002 Census Report. Population frequencies can vary for different ethnic groups, so for more detailed information, please turn to the Population Frequency Data Table in the Reference Section of your report.			

- > Technology:
 - Studying 20 genes = <0.003 % of the genome</p>
 - Studying 1M mutations (Microarray) = 0.03 % of the genome

S Massart

10-30 million SNPs believed to exist (4 million known)

How useful is data on 1 SNP?

The future relies on Genome Wide Association Studies (GWAS) (+100,000 SNPs)

UCD Institute of Food and Health

The number of copies of the 16p11.2 region predicts BMI

Mirror extreme BMI phenotypes associated with gene dosage (Genome Wide Association Study (GWAS))

S Jacquemont et al Nature 2011

Contrasting phenotypes

autism

sociability

schizophrenia

deletion

normal dosage

duplication

> Understanding also relies on plenty of genomic variations, including :

- Non coding DNA
- Epigenome
- Metagenome

Genome Sequencing will be a key technology to reveal those variants :

DNA sequencing is now amenable to a diagnostic test context

Key issue: Integration of data, bioinformatics

The real impact of genetic testing ?

The Case against:

- What does it mean to test for one gene polymorphism?
- Even in studies based on GWAS or deep sequencing the relative risk which is evidenced is very low: around 2-3 fold

□ The Case for:

- Well targeted single genetic trait may have a profound impact: ex: cholesterol levels

- With the advent of whole genome sequencing and progress in bioinformatics, combination of several polymorphism may lead to significant risk factors identification

Potential Benefits

At the population level

Identify subgroups who might be particularly responsive or resistant to dietary intervention Provide a better understanding of the mechanisms involved in

disease susceptibility

At the individual level

Increase awareness of risk Motivate behavior changes (diet, life style) Enhance prevention

Limitations (1)

- Technological:
 Bioinformatics
 Interpretation of data: Misleading claims
- **Psychological impact** (individual and family)
- Medical: Attention drawn away from other modifiable risk factors, decreased use of other services, false sense of security

Limitations (2)

Public Health:

Increased costs associated with personalized diets and designer foods

Targeting vulnerable populations

Concerns surrounding confidentiality, insurance

Dilute or contradict public health messages

"Buyer Beware"

A recent report by the Government Accountability Office highlighted a few of the concerns with four examples of DTC nutrigenomic tests. The GAO report raised concerns that the tests may mislead consumers by making unsound and ambiguous predictions about health risks.

□ In addition, the test results frequently include recommendations for the consumer to purchase dietary supplements that may be significantly overpriced compared with similar products available through a supermarket or pharmacy and that may, in fact, be harmful for some individuals.

USA: FDA implication

- Direct to consumer (DTC) genetic testing remains as a business model
 - Some bodies have issued statements against DTC genetic model
 - Failure of interpretation, incorrect decision-making
 - Others have championed DTC genetic testing model
 - Personal empowerment, proactive health strategies
 - Others request appropriate oversight for DTC genetic testing
 - Protect individuals from incorrect information, protect privacy
- FDA working with companies to come into compliance with FDA regulations for medical devices
- Panel intended to gain broad-based information on important issues in DTC genetic testing

Nutrigenomics

Specific groups or Individual, Personal, patterns of response?

Epigenetics

Nutrigenetics

Modified from S Massart

If DNA is the hardware, epigenetics is the software that tells genes what to do

with the environment

An on-going construction

The actors : codes, marks and transcription factors accessibility

The Metabolome interactions

(Nicholson, J. et al Nature, Rev. Microbiology, 2005, 3, 2-8)

nature

Vol 453 15 May 2008 doi:10.1038/nature06882

LETTERS

Human metabolic phenotype diversity and its association with diet and blood pressure

Holmes, E. et al (2008) 453 396-400.

THE "METABOLOME-WIDE ASSOCIATION STUDY" (MWAS) CONCEPT

"The broad non-selective analysis and statistical interrogation of metabolic phenotypes in relation to epidemiologic end-points and risk factors to generate testable physiological or pathway hypotheses".

Nutrigenomics

Intestinal Metagenomics

Genomics Epigenetics

Nutrigenetics

Modified from S Massart

The Intestinal Microbiota (10 times the number of host cells) (More than 150 fold increased genetic complexity)

Diet

The human intestinal microbiota : dense, structurally and functionally diverse

faecal microbiota : 100 trillions microorganisms
hundreds of species ...
normal consortium adapted and functionally stable

nutrition,
 physiology,
 immunity &
 protection

Quantitative metagenomics

H Blottière

Human intestinal microbial genes are largely shared in the cohort

Each individual has ~540 000 of the 3.3 million genes

40 % of an individual's genes are shared with at least 50 % of individuals of the cohort

Rare genes = genes shared by less than 20 % of individuals = 2.4 million genes

We are all rather similar! But not identical!!

Enterotypes of the human gut microbiome

Manimozhiyan Arumugam¹*, Jeroen Raes^{1,2}*, Eric Pelletier^{3,4,5}, Denis Le Paslier^{3,4,5}, Takuji Yamada¹, Daniel R. Mende¹, Gabriel R. Fernandes^{1,6}, Julien Tap^{1,7}, Thomas Bruls^{3,4,5}, Jean-Michel Batto⁷, Marcelo Bertalan⁸, Natalia Borruel⁹, Francesc Casellas⁹, Leyden Fernandez¹⁰, Laurent Gautier⁸, Torben Hansen^{11,12}, Masahira Hattori¹³, Tetsuya Hayashi¹⁴, Michiel Kleerebezem¹⁵, Ken Kurokawa¹⁶, Marion Leclerc⁷, Florence Levenez⁷, Chaysavanh Manichanh⁹, H. Bjørn Nielsen⁸, Trine Nielsen¹¹, Nicolas Pons⁷, Julie Poulain³, Junjie Qin¹⁷, Thomas Sicheritz-Ponten^{8,18}, Sebastian Tims¹⁵, David Torrents^{10,19}, Edgardo Ugarte³, Erwin G. Zoetendal¹⁵, Jun Wang^{17,20}, Francisco Guarner⁹, Oluf Pedersen^{11,21,22,23}, Willem M. de Vos^{15,24}, Søren Brunak⁸, Joel Doré⁷, MetaHIT Consortium⁴, Jean Weissenbach^{3,4,5}, S. Dusko Ehrlich⁷ & Peer Bork^{1,25}

May 2011

Enterotypes can be viewed as "blood groups" but the reasons for their existence remains to be elucidated

Recent publication: online September 1st (Wu et al, Science)

"Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes"

Bacteroides enterotype \rightarrow protein and animal fat ?

Prevotella enterotype → carbohydrate ?

Not modified by short term (10 days) diet intervention

(2 enterotypes found, based on 16S rDNA only – inadequate resolution ?)

They should allow patient stratification & aid to develop personalized medicine and nutrition

H Blottiere

ARTICLES

An obesity-associated gut microbiome with increased capacity for energy harvest

Peter J. Turnbaugh¹, Ruth E. Ley¹, Michael A. Mahowald¹, Vincent Magrini², Elaine R. Mardis^{1,2} & Jeffrey I. Gordon¹

BRIEF COMMUNICATIONS

MICROBIAL ECOLOGY

Human gut microbes associated with obesity

Ruth E. Ley, Peter J. Turnbaugh, Samuel Klein, Jeffrey I. Gordon Washington University School of Medicine, St Louis, Missouri 63108, USA

Suggested that Obese Individuals may have a lower Bacteroidetes: Firmicutes ratio than Lean Individuals – and this can be modulated by diet.

Modern 'non-infectious' human diseases with associated gut microbiotal disorders.

Gastric ulcers (*Helicobacter pylori*) Colon and other cancers.....

Autoimmune (AI) diseases

Inflammatory bowel diseases- Ulcerative Colitis & Crohn's (type IV)

Type 1 diabetes (type IV)- may be prevented by gut bugs and parasites

Primary biliary cirrhosis Celiac disease (type IV hypersensitivity) others too?

Insulin resistance related conditions

Type 2 diabetes and obesity... Allergies & related immune disorders Asthma, Eczema, Psoriasis.....(others?) Neuropsychiatric disorders? Autism (?), Schizophrenia?.....(others?) Hypertension....

From: J Nicholson

Inter- and Multidisciplinarity

Handling of data: knowledge management Bioinformatics, Systems Biology « Big Science » and « curiosity-driven » science

NuGO is a world-leading network integrating nutritional genomics in Europe.

NuGO is funded by the European Commission

The European Nutrigenomics Organisation: linking genomics, nutrition and health research (NuGO)

NuGO activities Representative examples

Challenges of molecular nutrition research : the nutritional phenotype database to store, share and evaluate nutritional systems biology studies *Ben Omnen et al.*

Time-Resolved and Tissue-Specific Systems Analysis of the pathogenesis of Insulin Resistance Robert Kleemann et al

Nutritigenomics and Nutrigenetics

- A real and most important case for the future of Personalised Health Care
- **Questions and Challenges**
- Evidence based ? To be substantiated
- Mechanisms ?
- □ Which impact?:
 - group of individuals?
 - individuals ?
 - novel biomarkers ?
 - novel sciencific model: integration of data multidisciplinarity